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Abstract

In this paper, we obtain simple expressions for the mean residual life in terms of the failure rate of
certain classes of distributions which subsume many of the standard cases. Several results in the
literature can be obtained using our approach.
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Introduction

In life testing situations, the expected additional lifetime given that a component has survived
until time t is a function of t, called the mean residual life. More specifically, if the random
variable X represents the life of a component, then the mean residual life is given by
m(t) = E(X —t|X > t).

Background and Definitions

Let F: [0,0) — [0, ) be a non decreasing , right continuous function with
F(0) =0,lim,  F(X) =1,

and let v denote the induced Lebesgue — Stieljes measure.(Equivalently , let v be a probability
measure on [0, ) and let ' be a cumulative distribution function of v ). If X is a nonnegative
random variable representing the life of a component having distribution function F, the mean
residual life is defined by

mt)=EX—-tlX>t) = %f (x —tdv(x), t =0,

where "F = 1 —F is the so-called survival function. Writing x —t = |, tx du and employing
Tonelli’ s theorem yields the equivalent formula

o0

m(t) = F ff dudv(x) = F ffdv (x)du = F f F(u)du, €))
t u t

t

which is sometimes also used as a definition . The cumulative hazard function may be defined
by R = —logF.
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Then (1) implies that:
m(t) = fgo exp{R(t) - R(t + x)}dx. )

If F (equivalently, v) is also absolutely continuous, then the probability density function f and
f
== R !
F

the failure rate (hazard function) » are defined almost everywhere by f = F’ and r =
respectively, and then
t TF ) t
_ x
R®) = —logF(t) = — | ——= dx. 3
© = ~logF() = - [ T = [ reax G
0 0

In view of (2) and (3) , we have expressed m in terms of r, albeit somewhat indirectly.

Ideally, we’d like to express the mean residual life in terms of known function of the failure rate
and its derivatives without the use of integrals. In any case, it is useful to have alternative
representation of the mean residual life. We note that the converse problem, that of expressing
the failure rate in terms of the mean residual life and its derivatives is trivial, for (1) and (3)
imply that

m(t) = r()m(t) — 1. “4)

Ultimately Increasing Failure Rate Distributions

Consider the class of distribution whose failure rate is ultimately increasing. More specifically ,
the failure rate should be strictly increasing from some point onward .Obviously , the important
class of lifetime distributions having a bathtub-shaped failure rate with , change points 0 < t; <
t, < oo (i.e. for which the failure rate is strictly decreasing on the interval [0, t;] , constant on
[t1,t,] and strictly increasing on [t,, o)) constitutes a proper subclass of the distributions we
consider here . We’ll see that if the failure rate is strictly increasing from some point onward,
then under certain additional conditions the mean residual life can be expanded in terms of
Gaussian probability functions.

Notation. Our conventions regarding the Bachmann-Landau O-notation , the Vinogradov

<« — notation , the symbol O(k(?)) , t — oo, denotes an unspecified function g for witch there
exist positive real numbers t, and B such that |g(t)|< B|h(t)| for all real t > t; . For such g
we write g(t) < h(t) or g(t) = O(h(t)). The notation g(t) = o(h(t)),t — oo, means that
for every real > 0 , no matter how small, there exists a positive real number t, such that
lg(®)|< e|h(t)| whenever t >t .

Theorem 1. Suppose that from some point onward, the failure rate » increases (strictly) without
bound. Suppose further that for some positive integer n, the n — 1 derivative is continuous and
satisfies

[r®@= D+ x)| « [r* V()| t > o (5)
uniformly in x for 0<x < min(1,7"(£)|7/3)and r@(t) « max(1,|r"(t)[3) , t > o,
3<j<n-1.

Finally, suppose there exists a positive real number € such that for each integer j in the range
3<j<n,

U@ = o () ), o ©)

Then we have the following expression for the mean residual life:
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n-1

m) = Y b @) +0 (), t > . ™
k=0

where the coefficients by (t) are given by the formal power series identity:

* k
Z by x* = exp{ Z r&=D(p) J]Cc—'} ®)

k=3
and
o) = Joox exp{ xr(t) — %xzr'(t)} dx
©))
’ 27 2
- (_ )k r'(t) [Bp < rp(t))> exp {%(t)}h:r(t)]'
Here,
d(x) = L i _Tvzd 10
V)L (10)

is the Gaussian probability function, i.e. the cumulative distribution function of the standard
normal distribution.

Before proving Theorem 1, we make some preliminary remarks and give two illustrative
examples. First, if r'(t) = 0 , then the uniformity condition on x in (5) should be interpreted as
0< x < 1. Next, observe that the hypothesis (6) becomes more restrictive as & increases .In
particular € > 1 implies lim;_,, rU=D(t) = 0. Of course, as ¢ increases, the error them in (7)
decreases. On the other hand, if 0 < & < 1, then rU~1(t) does not necessary approach zero, but
the correspondingly weaker hypothesis implies a weaker conclusion (larger error them). In any
case, since r increases without bound, the error term tends to zero ast — co. Additionally, if r is
infinitely differentiable we may let n = o in (3.3) to obtain the convergent infinite series
expansion

m(t) = Y=o bk (D)o (1),
valid for all sufficiently large values of ¢. (More specifically, for those ¢ for which r(t) > 1.

In general, however, we do not assume the failure rate has infinitely many derivatives; n is
fixed and the generating function (8) is a formal power series. Expanding (8) to compute by is
terms of 7(t) and its derivatives shows that if r has only n — 1 derivatives, then by is
undefined if > n . Differentiating (8) leads to the recurrence

1 r(]) (t)

k+1 <
j=2

bies (8) = — b k22, (11)

from which the coefficients b, (t) may be successively determined, starting with the initial
values by(t) = 1,b,(t) = b,(t) = 0. On the other hand, an application of the multinomial
theorem yields the explicit representation

5

by (6) = Z( 1y Zl—[ . (r(])(t)) ’ (12)

je2 Y
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in which |k/3] is the greatest integer not exceeding k/3 and inner sum is over all non-negative
integers @, , @3 , suchthat ¥ ;.,a; =p and ;> + Daj =k

Finally, we note that the functions ¢, of (9) may also give more explicitly. By setting a = r(t)
and b = 2r'(t) in Lemma 1 below, we find that

k+1
2 \ 2
() = (—DF (Tt)) ,
x {ZEO(Z’;) 2 (h 4 ) <(1 — O(ZD)et +1/2 3153 ﬁ(}/)

lk/2] Lt 3 A
-1/2 Zh=/0 h! (th+1) Az=h Z?ZOF}’
1
where 1= (r(t))? 2r'@t), T h+l =12 ’-1: j—l , and @ denotes the Gaussian
2 j=1 2
probability function (10).

Lemma 1. Let a be a real number, let b be a positive real number, and let £ be a non-negative
integer. Then

foka exp{—ax — bx?}dx=

|5

h—1 i1
k+1 k k 1 1 22
— (_1\kyn——— - _ _ A -
o 215 (5o ) sy 15 2
h=0 =0 I'(J +2)
lk/2] h
k k—1 A
— 2— —
ey (s JEY )

where 1 = a?/4b.

Proofs of Theorem 1 and Lemma 1 are relegated to the next section.

Proofs

Proof of Theorem 1. Since the failure rate is strictly increasing from some point onward, there
exist to = 0 such that r'(t) > 0 for allt > t,. Also, since lim,_,., 7(t) = o, there exist t; = 0

such that 7(t) > 1 for > t; . Now lett > max(t, t;),8 = 8(t) = min(1,1/3/|r"(©)]), and set

) ©
I(t) = f exp{R(t) — R(t + x)}dx, J(t) = L exp{R(t) — R(t + x)}dx
0

so that m(t) = I(t) + J(t). We have

J() = L r(t + x)exp{R(t) — R(t + x)}dx
= exp{R(t) — R(t + &}

= exp {—6r(t) - f08 xr'(t+6 — x)dx}.
< exp{—-6r(t)}.

But " = o(r373¢). By definition of, it follows that from some point onward we must have
6r = min(r,r¥). Therefore, if we set v=min (1,¢) then v> 0 and
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J(@®) < exp{—=(r(t))"}, (13)
for all sufficiently large values of z.

Next, we write

[ n-1 Xk 1 x
I(t) = f expi— Z r&=D()— — —f u =D (¢ oy —u)dudx
\ K (-1,
k=1
s [
= f ( b (t)x* + E, (x, t)) exp {—xr(t) - %xzr'(t)} dx
0 \i=o
where
n-1 K L . n-1
E,(x,t) = exp{— Z r=D)— - f u L=+ x —w)dug — Z by, (£)xk
K (n=1'J,
k=3 k=0
n-1
= 0| x"max 1_[ [r@ @))% |,
j=2

and the maximum is taken over all non negative integers aj satisfying 27;21(] + Da; =n.
In view of the fact that rU~1 = o(rj_jg)for 3 <j < n, it follows that

Ep(x,t) = o(x™(r(e))" ™), 0<x<é.
If we now write

I(t) = Z by (t)f xk exp —xr(t) — x T (t)}

.
Zbk (t)f xk exp —xr(t) — x r(t)}
k=0
1 '
n(x, - — —x? d
+f0 (x t)exp{ xr(t) > r(t)} X
then we find that

- - 8
Z Qr + Z O(byrke 0™ + 0 <rn "Sf x e"”dx)
k=0 0

k=0

The hypotheses on » and the definition of the coefficients b, imply that b, = 0(7""_"8). from
the derivation of the estimate (4.1) for J we recall that exp(—6r) < exp(—r"), at least from
some point onward. Finally, as

5 ©
f x"e X dx < f x"eXdx =nlr "1,
0 0

It follows that

I = Z by@y + o(r~1718), (14)
k=0

Since m = [ + ], combining (13) and (14) gives the stated result for m.
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To complete the proof, it remains only to establish the asserted evaluation of the integrals ¢, .
But this is readily obtained by completing the square in the exponential and differentiating
under the integral.

Proof of Lemma. By a straightforward change of variables, we find that

k+1

o0 o0 1 1
Zbe x* exp{—ax — bx?}dx = eAf (t2 —A2)k e tt~1/2 gt
0

zk:( )( k1T ( ,1) "
where v
I'(a, 1) = Loot“‘le_t (16)

is the incomplete gamma function . If we integrate (16) by parts and then divide both sides of
the result by I'(a + 1) = al'(a) , we obtain the recurrence formula

Ma+1,2) 2%* (o}
Ia+1) TI(@ TI(a)’

which can be iterated to give

T(a+kd) _  _jwk-1 A% I'(a,2)
C(a+k) Zh=o [(a+h+1l)  T(a)’ a7
valid for any non-negative integer k. In particular, when ¢ = 0,
LA _ -2 yk-14¢
T e Xho ' (18)
Equation (18) is valid for all positive integers k if 4 > 0; it is also valid when &k = 0 if A > 0.
Substituting & = - in (17) yields
1
(0430 agke1 255 TGA gy 257
i = — . 19
I (k+3) e OT(k+3) ey T re) L= O (k+d) 3 +2 (1 Q)(\/ﬂ)) (19)
Using (18) and (19) , we get the stated result from (15).
Applications
We provide two examples indicating how Theorem 1 may be applied.
Example 1. Consider a linear failure rate of the form
r(t) =« +pt, B>0. (20)

The motivation and application of (20) to analyzing various data sets has been demonstrated by
Kodlin (1967) and Carbone et al. (1967). Statistical inference related to the linear failure rate
model, has been studied Bain (1947), Shaked (1947) and more recently by Sen and Bhatacharya
(1995). For this model, the hypotheses of Theorem 1 are trivially satisfied for any positive
integer n and any positive real number . Since r" vanishes identically in this case, we see that
by (t) = 0 for k > 0 in (17) and in fact we have the extract result
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m(t) = fgo exp {—(a + Bt)x — BTxZ} dx = exp {(a;—[[:tz} <1 -0 (a:/%?t)) \/%

Example 2.Chen (2000) proposes the two-parameter distribution with cumulative distribution
function given by

Ft)=1- exp{(l — exp (tB))/l}, t>0,

where A > 0 and 8 > 0 are parameters .The corresponding hazard function is the ultimately
strictly increasing function of t given by

r(t) = AptPFLexp(tF), t>o0. (1)

It is straightforward, albeit somewhat tedious, to verify that Chen’s failure rate (21) satisfies the
hypotheses of Theorem 1 withn > 2 and 0 < € < g clearly € = % is optimal here .Thus, with
derivatives of r in (8) and (10) now coming (21), we see that the asymptotic formula

n-1

m® = Y beg(® +0 (), £
k=0

holds for all integers n > 2 . In particular, as the error term in (7) tends to zero in the limit as
— oo, we obtain the convergent infinite series representation

m(t) = Y=o bk )@y (1),

valid for all sufficiently large values of ¢ .There is no need to work out the coefficients by(t)
explicitly in this case. One can simply use the recurrence (11) to generate them.
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O reprezentare a duratei de viata reziduala

Rezumat

In aceastd lucrare se obtine o expresie simpld pentru durata de viatd reziduald utilizand rata de
defectare. Rezultatele obtinute se pot folosi pentru o clasa importanta de distributii care caracterizeazd
multe cazuri standard.



